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Fluid Dynamics
The primary objectives of this section is to introduce the student to
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Basic fluid flow

July 11, 2023



2

Conservation laws of transport phenomena and
To learn in details the basic principles and application of fluid mechanics

(momentum transport) to engineering problems.
Fluid dynamics is a branch of physics that deals with the study of fluids, which
include both liquids and gases, and the motion of these substances. It involves
the understanding and analysis of how fluids behave under various conditions,
such as flow patterns, pressure distributions, and forces acting upon them.
When dealing with fluid dynamics, there are key principles and concepts one
should always consider-and they include:

Conservation Laws: Fluid dynamics is based on the conservation laws, namely
the conservation of mass, momentum, and energy. These laws state that mass,
momentum, and energy cannot be created or destroyed but can only be trans-
ferred or transformed.

Continuum Hypothesis: Fluid dynamics treats fluids as continuous sub-
stances, assuming that they are composed of an infinite number of infinitesi-
mally small particles. This approximation is valid as long as the fluid is not
extremely rarefied or at the molecular scale.

Fluid Properties: Fluids have certain physical properties, such as density,
viscosity, and compressibility, which influence their behavior. Density refers
to the mass per unit volume of a fluid, viscosity measures its resistance to flow,
and compressibility describes how much the fluid volume changes under pres-
sure.

Bernoulli’s Principle: Bernoulli’s principle states that within a steady flow
of an incompressible fluid, the sum of the pressure, kinetic energy, and po-
tential energy per unit volume remains constant. It describes the relationship
between fluid velocity and pressure and is often used to explain phenomena
like lift in aerodynamics.

Navier-Stokes Equations: The Navier-Stokes equations are a set of partial
differential equations that govern the motion of fluid substances. They de-
scribe the conservation of mass, momentum, and energy and are fundamental
to solving fluid flow problems.
Fluid dynamics finds applications in various fields, including engineering, me-
teorology, oceanography, aerodynamics, and hydraulic systems. It helps an-
alyze and predict the behavior of fluids in different situations, such as the
flow of water through pipes, the movement of air around an airplane wing,
or the formation of weather patterns. Computational fluid dynamics (CFD)
is a branch of fluid dynamics that utilizes numerical methods and computer
simulations to solve complex fluid flow problems.
Streamline flow
Streamline flow refers to the smooth and regular flow of a fluid, where each
particle follows a path that is parallel to the direction of the flow (see fig. a).
In streamline flow, there is no intermixing of fluid particles between adjacent
streamlines. This type of flow is often observed in idealized situations with
highly viscous fluids or when the fluid flow is highly laminar and there is min-
imal turbulence (see fig. b).
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Streamline flow can be visualized by imagining a set of parallel lines (see fig.
a) drawn within the fluid, representing the paths followed by individual fluid
particles. These lines, known as streamlines, are tangent to the velocity vector
of the flow at each point. The streamlines are close together in regions of high
velocity and farther apart in regions of low velocity.

The path taken by particles of fluid under steady flow conditions are called
streamlines. If we represent the flow lines as curves, then the tangent at any
point on the curve gives the direction of the fluid velocity at that point.

There is a simple, but very important equation that applies to streamline flow.
Suppose in the figure below, that the flow has stabilized so that the amount
of fluid that enters area A1 in time ∆t exits from area A2 in the same time
interval ∆t.
Then we can write:

mass going into A1 = mass going out of A2 1

From density equation, we know that

m = ρV 2

Where m is mass, ρ represents fluid density and V represents the volume of
the fluid flowing through the area.



4

Substituting equations (??) into (??) yields

ρ1V1 = ρ2V2 3

The volume of the fluid through A1 in time ∆t is simply:

V1 = A1 (v1∆t) 4

Where v1 is the average velocity on the cross-section at A1.

∴ V1 = A1 (v1∆t) and V2 = A2 (v2∆t) 5

Placing equations (??) on equations (??) yields what is called the continuity
equation

ρ1v1A1 = ρ2v2A2 6

In this form, the equation is restricted to steady streamline flow with no sources
(or sinks) for the fluid within the flow region.
A special situation occurs if the fluid is incompressible (such as water), then
ρ1 = ρ2 and we have a relation between the flow rates v1A1 and v2A2

∴ v1A1 = v2A2 or v2 = v1
A1

A2
In general, the smaller the cross-sectional area, the faster the fluid flow.
Problem 1: A fluid flows steadily through a pipe of varying cross-sectional
area. If the velocity of the fluid at one section of the pipe is 5 m/s and the
cross-sectional area at that section is 0.2 m², what is the velocity at another
section where the cross-sectional area is 0.1 m²?
Solution: According to the principle of continuity, the mass flow rate remains
constant in a streamline flow. The mass flow rate is given by the equation:

ρ1v1A1 = ρ2v2A2

Since the flow is steady, the mass flow rate is constant. Therefore, we can write:

v2 = v1
A1

A2

Plugging in the given values, we get:

v2 =
5 ms−1 × 0.2 m2

0.1 m2

v2 = 10 ms−1

Therefore, the velocity at the section with a cross-sectional area of 0.1 m² is 10
m/s.
Problem 2: Water flows through a horizontal pipe with a velocity of 2 m/s.
At a certain point along the pipe, the diameter of the pipe decreases by half.
Calculate the velocity of water at this point.
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Solution: In this case, we can use the principle of continuity, which states
that the product of the velocity and cross-sectional area remains constant in
streamline flow. Let’s assume the initial diameter of the pipe is D, and after
the diameter decreases, it becomes D/2.
According to the principle of continuity, we have:

v1A1 = v2A2

The cross-sectional area of a pipe is proportional to the square of its diameter.
Therefore, we can write:

v1 ×
(
π × (D/2)2

)
= v2 ×

(
π × (D/4)2

)
Simplifying the equation, we get:

v2 = v1 ×
(D/2)2

(D/4)2

∴ v2 = v1 × 4

Plugging in the given velocity (2 m/s), we have:

v2 = 2 ms−1 × 4 = 8 ms−1

Therefore, the velocity of water at the point where the diameter decreases is 8
m/s.

Bernoulli’s Principle
The Bernoulli principle, named after the Swiss mathematician Daniel Bernoulli,
states that as the speed of a fluid (liquid or gas) increases, its pressure de-
creases, and vice versa. It is based on the principle of conservation of energy
applied to fluid flow.
According to the Bernoulli principle, the total energy of a fluid remains con-
stant along a streamline. The total energy consists of three components: the
potential energy (due to the fluid’s height or elevation), the kinetic energy (due
to the fluid’s velocity), and the pressure energy (due to the fluid’s pressure).
The qualitative behaviour that is usually labeled with the term “Bernoulli ef-
fect” is the lowering of fluid pressure in regions where the flow velocity is
increased.
Consider a case of water flowing through a smooth pipe; such a situation is
depicted in the figure below. This situation will serve as our working model
in obtaining the Bernoulli’s equation. We will be employing the work-energy
theorem and energy conservation.
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If we examine a fluid section of mass m (within the volume dV) traveling to the
right as shown in the schematic above. The net work in moving the fluid is:

Wnet = W1+W2 = F1dx1−F2dx2 1

Where F denotes a force and x is displacement. The second term picked up a
negative sign because the force and displacement are in opposite directions.
From P = F

A , we have F = PA 2
Substituting equation (??) into equation (??) we have

∆W = P1A1x1−P2A2x2 3

The displaced fluid volume V is the cross-sectional area A times the thickness
x. this volume remains constant for an incompressible fluid.

∴ V = A1x1 = A2x2 4

Using eq. (??) in (??), we have

∆W = (P1 − P2)V 5

Since work has been done, there has been a change in the mechanical energy
of the fluid segment.
The energy change between the initial and final position is given by:

∆E = E2−E1 = (U2 +K2)−(U1 +K1) 6

Where U and K are the potential and kinetic energies respectively.

∆E =
(
mgh2 +

1
2
mv2

2

)
−
(
mgh1 +

1
2
mv2

1

)
7
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The work-energy theorem says that the net work done is equal to the change in
the system energy. This can be written as:

∆W = ∆E 8

Substituting eq. (??) into (??) yields

(P1 − P2)V =
(
mgh2 +

1
2
mv2

2

)
−
(
mgh1 +

1
2
mv2

1

)
9

Dividing eq. (??) by the fluid volume V, gives:

P1−P2 =
(
ρgh2 + ρ

v2
2

2

)
−
(
ρgh1 + ρ

v2
1

2

)
10

Where ρ = m
V 11

To complete our derivation, we reorganize eq. (??)

P1 = ρgh1 +ρ
v2

1
2

= P2 +ρgh2 +ρ
v2

2
2

12

Finally, we note that eq. (??) is true for any two positions,

∴ P +ρgh+ρ
v2

2
= constant 13

Where:

1. P is the pressure exerted by the fluid.

2. ρ is the density of the fluid.

3. v is the velocity of the fluid.

4. g is the acceleration due to gravity.

5. h is the height of the fluid above a reference point.

Equation (??) is commonly referred to as Bernoulli’s equation. This expression
is restricted to incompressible fluids and streamline flows.
The Bernoulli equation shows that as the fluid flows faster (increasing veloc-
ity), the pressure decreases, assuming the height and density remain constant.
This relationship can be observed in various applications, such as airplane
wings generating lift, water flowing through a pipe, or air flowing over an ob-
ject.
It is important to note that the Bernoulli principle is an idealized concept that
assumes certain conditions, such as steady flow, incompressibility (for liquids),
and low viscosity. In real-world situations, other factors may come into play,
such as viscosity, turbulence, and compressibility, which can modify the be-
havior of fluids.



8

Top of Form
Problem 1: A pipe has a diameter of 0.2 meters and is carrying water at a
velocity of 3 m/s. The pipe is connected to a nozzle with a diameter of 0.05
meters. Find the velocity of the water as it exits the nozzle.
Solution: We can use the Bernoulli equation to solve this problem. The equa-
tion states that the sum of the pressure, kinetic energy per unit volume, and
potential energy per unit volume of a fluid remains constant along a stream-
line.
Assuming the pipe and nozzle are at the same height, the potential energy per
unit volume cancels out. Therefore, we can write the equation as:

P1 +
1
2
ρv2

1 = P2 +
1
2
ρv2

2

Where: P1 is the pressure at the pipe (in N/m2 or Pascal), ρ is the density of
water (in kg/m3), v1 is the velocity at the pipe (in m/s), P2 is the pressure at
the nozzle (in N/m2 or Pascal), v2 is the velocity at the nozzle (in m/s).
Since the pipe and nozzle are connected, the pressure remains the same, so P1 =
P2. Also, the density of water remains constant. Plugging in the values, we
have:

1
2
ρv2

1 =
1
2
ρv2

2

Canceling out the ρ and solving for v2, we get:

v2 =
√(

v2
1 ×

(
d2

1 /d
2
2

))
Where: d1 is the diameter of the pipe (in meters), d2 is the diameter of the
nozzle (in meters).
Plugging in the given values, we have:

v2 =
√(

32 ×
(
0.22/0.052

))
=

√
(9× 6) =

√
144 = 12 m/s

Therefore, the velocity of the water as it exits the nozzle is 12 m/s.
Problem 2: Water flows through a horizontal pipe with a diameter of 0.1 me-
ters. The pressure at one end of the pipe is 2,000 Pa, and the velocity of the
water at that end is 5 m/s. At a certain point along the pipe, the pressure is
1,000 Pa. Find the velocity of the water at that point.
Solution: Using the Bernoulli equation, we can relate the pressures and veloc-
ities at the two points along the pipe. The equation is:

P1 +
1
2
ρv2

1 = P2 +
1
2
ρv2

2

Where: P1 is the pressure at the first point (in N/m2 or Pascal), ρ is the density
of water (in kg/m3), v1 is the velocity at the first point (in m/s), P2 is the pres-
sure at the second point (in N/m2 or Pascal), v2 is the velocity at the second
point (in m/s).
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Plugging in the given values, we have:

2000 +
1
2
ρ
(
52

)
= 1000 +

1
2

(ρv2
2 )

Simplifying the equation, we get:

ρ (25) = ρv2
2

Since the density of water is constant, we can cancel it out. Solving for v2, we
have:

v2 =
√

25 = 5 m/s

Therefore, the velocity of the water at the certain point along the pipe is 5 m/s.
Venturi Effect
The Venturi effect, named after Italian physicist Giovanni Battista Venturi,
refers to the phenomenon of fluid flow through a constricted section of a pipe
or channel. It describes the relationship between the speed of fluid flow and
the pressure exerted by the fluid.
When a fluid (liquid or gas) flows through a pipe, its speed and pressure vary
depending on the cross-sectional area of the pipe. The Venturi effect occurs
when the fluid encounters a narrow section, called a Venturi, in the pipe.

The Venturi consists of three main parts: an inlet section with a larger diame-
ter, a narrow throat section, and an outlet section with a larger diameter again.
As the fluid flows from the wider section into the narrower throat, its speed
increases due to the reduction in cross-sectional area. According to the princi-
ple of continuity, which states that the mass flow rate remains constant in an
incompressible fluid, this increase in velocity is accompanied by a decrease in
pressure.
The increase in fluid speed in the Venturi can be explained by the conserva-
tion of energy principle. According to Bernoulli’s principle, the total energy
of a fluid remains constant along a streamline. The total energy consists of
three components: potential energy (pressure), kinetic energy (velocity), and
gravitational potential energy (height). When the fluid flows into the narrower
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throat, the cross-sectional area decreases, resulting in an increase in fluid ve-
locity. As a result, the kinetic energy of the fluid increases while the pressure
decreases. This decrease in pressure is sometimes referred to as the Venturi
effect.
After passing through the narrowest point of the Venturi, the fluid enters the
outlet section, which has a larger cross-sectional area. As the area increases,
the fluid slows down, and its kinetic energy is converted back into pressure
energy. Therefore, the pressure in the outlet section is higher than in the throat
section, but still lower than in the inlet section.

Applying the Bernoulli’s equation gives this difference in pressure as:

P1 − P2 =
ρ

2

(
v2

2 − v
2
1

)
The Venturi effect finds numerous applications in various fields. Some of
which include:

1. Carburetors: In internal combustion engines, the Venturi effect is used
in carburetors to mix air and fuel. As the air flows through a narrow
section, fuel is drawn into the airstream due to the decrease in pressure,
creating a combustible mixture.

2. Vacuum cleaners: The Venturi effect is employed in some vacuum cleaner
designs to create suction. By forcing air to flow through a narrow section,
the pressure decreases, allowing the cleaner to draw in dirt and debris.

3. Respiratory system: The Venturi mask is a medical device used to deliver
a controlled oxygen supply to patients. By adjusting the size of the con-
stricted section, the device can control the amount of oxygen mixed with
air, thereby providing a specific oxygen concentration.
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4. Industrial applications: The Venturi effect is utilized in various indus-
trial processes, such as chemical reactors and fluid measurement devices,
where precise control of fluid flow and pressure is required.

Overall, the Venturi effect demonstrates the relationship between fluid flow,
velocity, and pressure, showcasing the conservation of energy principles and
finding practical applications in numerous fields.
Viscous Flow
Viscous flow refers to the movement of a fluid that exhibits viscosity, which is
the resistance to flow or the internal friction within a fluid. When a fluid flows,
its particles or molecules interact with each other and create a shearing effect
due to their cohesive forces. Viscosity is a measure of this resistance to shear
or deformation.
In a viscous flow, the fluid particles move in layers, with adjacent layers slid-
ing past each other. The velocity of the fluid varies across the flow, with the
highest velocity at the center and lower velocities near the boundaries. This
phenomenon is known as velocity gradient or velocity profile.
The behavior of a fluid in viscous flow can be described by Newton’s law of
viscosity, which states that the shear stress (τ) between adjacent layers of a
fluid is directly proportional to the velocity gradient du/dy, where du is the
change in velocity and dy is the change in distance perpendicular to the flow
direction. Mathematically, this relationship can be expressed as:

τ = µ× (du/dy)

In this equation, µ is the dynamic viscosity of the fluid, which represents its
resistance to shear. The higher the dynamic viscosity, the greater the resistance
to flow. It is often referred to as the thickness or ”stickiness” of the fluid.

The velocity gradient (du/dy) determines the rate at which adjacent fluid layers
slide past each other. When the velocity gradient is high, the fluid experiences
a greater shear stress, and the flow is more turbulent. On the other hand, when
the velocity gradient is low, the fluid experiences less shear stress, and the flow
is more laminar.
If we consider fluid flowing through a pipe; let P1 be the pressure at point 1
and P2 that at point 2, a distance L downstream from the point of consideration.
The pressure drop becomes:

∆P = P1 − P2

This pressure drop is proportional to the flow rate. The proportionality con-
stant is called the resistance R.

∴ ∆P ∝ Iv
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⇒ ∆P = P1 − P2 = IvR

Where Iv = vA is the volume flow rate. The resistance to flow R depends on the
length of the pipe L, the radius r, and the viscosity of the fluid.
Viscous flow can be characterized by two different regimes: laminar flow and
turbulent flow.

1. Laminar flow: In laminar flow, the fluid moves in smooth, parallel layers,
and the velocity profile remains constant over time. The fluid particles
flow in an orderly fashion, with minimal mixing and diffusion between
layers. Laminar flow occurs at lower velocities and with fluids that have
low viscosity. It is described by Poiseuille’s law, which relates the flow
rate, pressure, viscosity, and dimensions of the system.

2. Turbulent flow: Turbulent flow is characterized by chaotic and irregular
fluid motion. The velocity profile fluctuates over time, with the forma-
tion of eddies and vortices. Turbulent flow occurs at higher velocities
and with fluids that have high viscosity. It is influenced by factors such
as Reynolds number, which is a dimensionless parameter indicating the
ratio of inertial forces to viscous forces.

The transition from laminar to turbulent flow depends on various factors, in-
cluding the fluid properties, flow geometry, and velocity. In some cases, the
flow may exhibit transitional behavior, which is a mix of laminar and turbu-
lent characteristics.
Viscous flow has significant implications in various fields, including fluid dy-
namics, engineering, and biology. Understanding the behavior of viscous flows
is crucial for designing efficient transportation systems, optimizing industrial
processes, analyzing blood flow in the human body, and many other applica-
tions.
Problem: As blood flows from aorta through the arteries, arterioles, capillaries,
venules, and veins, to the left atrium, the (gauge) pressure drops from about
13.3 kPa to zero. If the flow rate is 0.08 L/s, find the total resistance of the
circulatory system (source: Tippler 4th edition).
Solution: we first convert the pressure from kilopascal to N/m2

13.3 kP a = 1.33× 104N/m2

Using 1L = 1000 cm3 = 10−3m3

R =
∆P
Iv

=
1.33× 104N/m2

8× 10−5m3/s

= 1.66× 108 N.s/m5

Poiseuille’s law
Poiseuille’s law, also known as Hagen-Poiseuille law, describes the flow of a
viscous fluid through a cylindrical pipe or a blood vessel. It quantitatively re-
lates the flow rate of the fluid to various factors such as the pressure difference
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across the pipe, the viscosity of the fluid, the length of the pipe, and the radius
of the pipe. Poiseuille’s law is derived from the principles of fluid mechanics
and is widely used in various fields, including physiology, engineering, and
medicine.
The assumptions of the law are the flow is laminar, viscous and incompressible
and flow is through a constant circular cross-section that is substantially longer
than its diameter. We are to derive the poiseuille equation using these basic
assumptions.
Consider a solid cylinder of fluid, of radius r inside a hollow cylindrical pipe
of radius R. The driving force on the cylinder due to the pressure difference is

Fpress = ∆P
(
πr2

)
The viscous drag force opposing the motion depends on the surface area of the
cylinder (length L and radius r).

⇒ Fvisc = −η (2πrL)
dv
dr

In equilibrium condition of constant speed, where the net force goes to zero

Fpress +Fvisc = 0

⇒ ∆P
(
πr2

)
= η (2πrL)

dv
dr

∴
dv
dr

=
∆P

(
πr2

)
η (2πrL)

=
∆P
2ηL
× r

Empirically, the velocity gradient is as shown:
At the center,

r = 0

⇒ dv
dr

= 0

∴ v is at maximum at the edge:

r = R;v = 0

We can integrate dv
dr = ∆P

2ηL × r; thus:∫ 0

v
dv =

(
∆P
2ηL

)
×
∫ R

r
rdr

v (r) =
(
∆P
4ηL

)[
R2 − r2

]
The above equation has a parabolic form as expected. From the continuity
equation, the volume flow rate is given as:

dV
dt

=
∫

v.dA
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Substituting the velocity profile equation and the surface area of the cylinder,
we have:

dV
dt

=
∫

v.dA =
∫ R

0

(
∆P
4ηL

)[
R2 − r2

]
. (2πrdr)

=
(
π.∆P
2ηL

)
.

∫ R

0

(
R2r − r3

)
dr

(
π.∆P
2ηL

)[
R4

2
− R4

4

]

=
π.∆P .R4

8ηL

⇒ dV
dt

=
π.∆P .R4

8ηL

But dV
dt = Iv

⇒ Iv =
π.∆P .R4

8ηL

The pressure drop is then given as

∆P =
8ηL
πR4 × Iv

The equation Iv = π.∆P .R4

8ηL is known as the Poiseuille’s equation
Where:

1. Iv represents the volumetric flow rate of the fluid (in cubic meters per
second, m³/s).

2. ∆P is the pressure difference across the two ends of the pipe (in pascals,
Pa).

3. r is the radius of the pipe (in meters, m).

4. η is the dynamic viscosity of the fluid (in pascal-seconds, Pa·s).

5. L is the length of the pipe (in meters, m).

Now, let’s break down the components of the equation and understand their
significance:

1. Volumetric Flow Rate (Iv): The volumetric flow rate represents the vol-
ume of fluid passing through a given point in the pipe per unit time. It
is expressed in units of volume per unit time, such as cubic meters per
second (m³/s).
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2. Pressure Difference (∆P): The pressure difference refers to the pressure
drop across the two ends of the pipe. It determines the driving force for
the fluid flow. The greater the pressure difference, the higher the flow
rate.

3. Radius of the Pipe (r): The radius of the pipe measures the distance from
the center of the pipe to its inner wall. The Poiseuille’s law demonstrates
that the flow rate is directly proportional to the fourth power of the pipe
radius. Thus, a small change in the radius can significantly impact the
flow rate. A larger radius allows for higher flow rates.

4. Dynamic Viscosity (η): Viscosity is a measure of a fluid’s resistance to
flow. It quantifies the internal friction between adjacent layers of fluid as
they move relative to each other. Dynamic viscosity represents the ratio
of the shear stress to the velocity gradient within the fluid. The higher
the viscosity, the slower the fluid flow.

5. Length of the Pipe (L): The length of the pipe indicates the distance over
which the fluid flows. The Poiseuille’s law shows that the flow rate is
inversely proportional to the length of the pipe. A longer pipe will have
a lower flow rate compared to a shorter pipe, given the same pressure
difference and other factors.

Overall, Poiseuille’s law provides an understanding of how different factors
influence the flow rate of a viscous fluid through a cylindrical pipe. It demon-
strates the importance of parameters such as pressure difference, pipe radius,
viscosity, and pipe length in determining the fluid flow.
Top of Form
Problem 1: A fluid with a viscosity of 0.05 Pa·s flows through a pipe of length
2 m and radius 0.02 m. The pressure difference across the ends of the pipe is
100 Pa. Calculate the volumetric flow rate.
Solution: Using the Poiseuille’s law equation:

Iv =
π.∆P .R4

8ηL

Iv =
π × 100× (0.02)4

8× 0.05× 2
= 0.3927m3/s

Therefore, the volumetric flow rate is approximately 0.3927 cubic meters per
second.
Problem 2: Water is flowing through a blood vessel of radius 0.5 mm and
length 10 cm. The pressure difference across the ends of the vessel is 2000 Pa.
The viscosity of water is 0.001 Pa·s. Find the volumetric flow rate.
Solution: Converting the radius and length to meters: r = 0.5 mm = 0.5 ×
10−3m;L = 10 cm = 10× 10−2m
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Using the Poiseuille’s law equation:

Iv =
π.∆P .R4

8ηL

Iv =
π × 2000×

(
0.5× 10−3

)4

8× 0.001× 10× 10−2 ≈ 0.00393 m3/s

Therefore, the volumetric flow rate is approximately 0.00393 cubic meters per
second.
Reynolds Number
The Reynolds number is a dimensionless quantity used in fluid mechanics to
characterize the flow of a fluid (liquid or gas) around a solid object or within a
conduit, such as a pipe. It was named after Osborne Reynolds, a 19th-century
Irish engineer and physicist who made significant contributions to the study
of fluid mechanics.
The Reynolds number (Re) is defined as the ratio of inertial forces to viscous
forces within the fluid flow. It is given by the following formula:

Re =
inertial f orce

viscous f orce

The inertial force is given by ρV 2

L ; while the viscous force is given by ηv
L2

Re =
ρV 2

L
× L2

ηv
=

ρvL

η

Where:

1. Re is the Reynolds number

2. ρ is the density of the fluid

3. v is the velocity of the fluid relative to the object or through the conduit

4. L is a characteristic length of the object or conduit

5. η is the dynamic viscosity of the fluid

The equation can also be written in terms of the radius of the pipe r:

Re =
2rρv
η

The Reynolds number helps determine the type of flow regime that occurs
in a particular situation. It provides information about whether the flow is
laminar or turbulent. Laminar flow refers to smooth, ordered flow where the
fluid particles move in parallel layers, while turbulent flow is characterized by
chaotic, irregular motion with eddies and swirls.
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In general, the Reynolds number can be used to make predictions about the
behavior of fluid flow. When the Reynolds number is low, below a critical
value (around 2,000), the flow tends to be laminar. As the Reynolds number
increases, the flow transitions to a turbulent state. The specific value at which
this transition occurs depends on various factors, such as the geometry of the
object or conduit and the fluid properties.
Understanding the flow regime is crucial because it affects various aspects of
fluid dynamics. For example, laminar flow tends to be predictable, with well-
defined streamlines and minimal energy losses due to friction. On the other
hand, turbulent flow results in increased mixing, higher pressure drop, and
greater energy losses. These differences have implications for engineering de-
sign, such as in the design of pipes, pumps, and heat exchangers, where the
choice of laminar or turbulent flow can impact efficiency and performance.
The Reynolds number is widely used across different fields, including engi-
neering, physics, and biology, to analyze and model fluid flow. It provides a
quantitative measure to assess and compare fluid flow situations, enabling re-
searchers and engineers to predict and analyze flow patterns, pressure drops,
heat transfer rates, and other relevant characteristics of fluid systems.
Top of Form
roblem: A fluid with a density of 1000 kg/m³ flows through a pipe at a velocity
of 2 m/s. The pipe has a diameter of 0.1 m, and the dynamic viscosity of the
fluid is 0.01 kg/(m·s). Determine the Reynolds number and classify the flow
regime.
Solution:

1. Identify the given values:

(a) ρ = 1000 kg/m³ (density of the fluid)

(b) v = 2 m/s (velocity of the fluid)

(c) L = 0.1 m (diameter of the pipe)

(d) η = 0.01 kg/(m·s) (dynamic viscosity of the fluid)

2. Substitute the values into the Reynolds number formula: Re = ρvL
η

1000×2×0.1
0.01 =

2000

3. The Reynolds number is 2000.

4. Determine the flow regime:

(a) If Re < 2000, the flow is laminar.

(b) If Re > 4000, the flow is turbulent.

(c) If 2000 < Re < 4000, the flow is transitional.

In this case, Re = 2000, which falls within the range of 2000 < Re < 4000.
Therefore, the flow regime is transitional.
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By solving problems involving the Reynolds number, you can analyze fluid
flow characteristics and predict the behavior of different systems, such as pipes,
channels, or even airflows over objects.
Top of Form
Top of Form
Stoke’s Law and Applications
Stokes’ law, named after the Irish mathematician and physicist George Gabriel
Stokes, describes the behavior of small spherical particles settling in a viscous
fluid. It provides a mathematical relationship between the drag force experi-
enced by a particle and its velocity. Stokes’ law is applicable in the regime of
low Reynolds numbers, which indicates that the flow is laminar and the iner-
tial forces are negligible compared to the viscous forces.
Stokes’ law states that the drag force (F) acting on a small spherical particle in
a viscous fluid is proportional to the velocity (v) of the particle, the viscosity
(η) of the fluid, and the radius (r) of the particle. Mathematically, it can be
represented as:
F = 6πηrv
Where: F is the drag force on the particle (in Newtons), η is the viscosity of the
fluid (in Pascal-seconds or Poise), r is the radius of the particle (in meters), v is
the velocity of the particle relative to the fluid (in meters per second), and π is
a mathematical constant (approximately 3.14159).
Stokes’ law assumes that the particle is much smaller than the characteristic
length scale of the flow, and its motion is dominated by the viscous drag forces.
It also assumes that the particle is moving at a constant velocity, without any
acceleration.
Applications of Stokes’ law in fluid flow include:

1. Sedimentation: Stokes’ law is commonly used to estimate the settling ve-
locity of particles in sedimentation processes. It helps in understanding
the behavior of solid particles when they settle through a fluid under the
influence of gravity. The law enables the calculation of terminal settling
velocity, which is useful in various fields such as wastewater treatment,
sediment transport studies, and the separation of solid particles from
suspensions.

2. Particle Size Analysis: By measuring the settling velocity of particles in a
fluid medium, Stokes’ law can be used to estimate the particle size. This
technique is known as sedimentation analysis or Stokes’ settling. It has
applications in the characterization of colloidal particles, determination
of particle size distributions, and particle separation techniques.

3. Fluid Dynamics: Stokes’ law provides insights into the flow behavior of
fluids with low Reynolds numbers. It helps in understanding the drag
forces acting on small particles, such as microorganisms or nanoparticles,
in biological and chemical processes. The law is also relevant in the study
of droplet formation, emulsion stability, and the behavior of particles in
suspension.
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4. Rheology: Rheology is the study of the flow and deformation of materi-
als, particularly non-Newtonian fluids. Stokes’ law serves as a basis for
understanding the behavior of viscous fluids under shear or extensional
flow. While it is a simplification of more complex fluid dynamics, it forms
the foundation for some models used in rheological analysis.

5. Microfluidics: In microfluidic systems, where the flow occurs at small
length scales, Stokes’ law is frequently used to describe the behavior of
particles or droplets. By considering the drag forces, researchers can pre-
dict the flow behavior and manipulate the motion of particles or droplets
in microchannels for various applications, including lab-on-a-chip de-
vices, medical diagnostics, and chemical synthesis.

It is important to note that Stokes’ law is an idealization and has certain lim-
itations. It assumes that the fluid flow is steady, the particles are small and
spherical, and the flow is laminar with low Reynolds numbers. In real-world
situations, deviations from these assumptions may require the consideration
of more complex fluid dynamics models.
Top of Form
Problem: A spherical particle of radius 0.1 mm is falling in a fluid with a
viscosity of 0.01 Ns/m². The velocity of the particle is 0.5 m/s. Calculate the
drag force acting on the particle.
Solution: To solve this problem, we can use Stokes’ law equation:
F = 6πηrv
Where: F is the drag force η is the viscosity of the fluid r is the radius of the
particle v is the velocity of the particle
Plugging in the given values:

F = 6π × 0.01× 0.1× 0.5 ≈ 0.0942 N

Therefore, the drag force acting on the particle is approximately 0.0942 N.
Top of Form
Top of Form
Top of Form
Top of Form


